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Functionalized lithiosilanes are versatile reagents in organic and
organometallic chemistry.They are used for the nucleophilic
introduction of protecting groups and synthesis of silyl-substituted
transition metal complexésor silicon-based polymefs.Of all
known functionalized lithiosilanes especially systems of type
Rx(R:N)SiLi (developed by K. Tamao) are used for these purptses.

In contrast to closely related alkyllithiums, methods of preparation
for lithiosilanes such as SiSi bond cleavage of disilanes or metal
metal exchange reactions are limited to specialized starting
compounds and can result in the formation of byproducts. Our
interest in this field concerns an alternative and simple access to
functionalized or even highly enantiomerically enriched lithio-
silanes, which are generally prepared by-Si bond cleavage of
suitable disilanes such as highly enantiomerically enrict®ell(

(cf. Scheme 1}.In comparison to disilanes, functionalized tetra-

organosilanes are more readily accessible starting materials and

easier to handle.

Scheme 1
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Herein we report a new example of reductive-8i bond
cleavage by lithium resulting in the selective formation of the
lithiosilanerac-2, which should have synthetic potential similar to
that of the systems of K. Tamao. This reaction type was hitherto
only observed as an unwanted side reactioffering in some cases
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if) 2.2 eq. Ph,MeSiCl, THF, -80 °C— r.t., — 2 LiCl, — Ph;MeSi
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rotrimethyl- or chloromethyldiphenylsilane &80 °C result in the
selective formation of disilanesic-6 or rac-1 and trimethylphen-
ylsilane or methyltriphenylsilane, respectively (cf. Scheme 2). No
significant amounts of other compounds were detected by NMR
and GC/MS analysis of the crude products, indicating a selective
cleavage of the SiC bond between silicon and one phenyl group.
After workup, the disilanesac-6 andrac-1 were isolated in yields

of 91 and 90%, respectively. In contrast to the preparaticac

by Si—Si bond cleavage ofac-1 (analogous to the reaction in
Scheme 1), the new SIC bond cleavage of enables the removal

of most of the byproduct phenyllithium fronac-2 by evaporation

access to special compounds, which despite their low yields are ofof THF and washing witm-hexane.

significant interest®—¢ Our focus rests on developing tetraorga-
nosilane precursors for selective-& bond cleavage reactions with
lithium metal. In prior work, the StCHPh, bond in (diphenyl-

Although the Si-C bond cleavage ofl affords synthetically
utilizable solutions ofac-2, a precise NMR analysis of lithiosilane
rac-2 required purer samples. This was achieved by reactiog@

methyl)-substituted tetraorganosilanes was successfully cleaved withwith rac-methoxymethylphenyl(piperidinomethyl)sildfig¢o give

lithium metal® The steric demand of the (diphenylmethyl) group,
however, prevented the preparation of starting material from which
lithiosilane 2 could be accessed.

In our present work, treatment of the phenyl-substituted silane
4 with lithium metal affordedrac-2 by selective cleavage of one
Si—C bond between silicon and a phenyl group (cf. Scheme 2).
Moreover, the solid-state structure of the lithiosilanae-2 was
determined as the first example of a dimeric organyl-substituted
lithiosilane in the presence of THFIn addition, this analysis
supplies vital structural information on the racemic form of the
enantiomerically pure compourl(cf. Scheme 1).

The phenyl-substituted silareis available in one step starting
from (chloromethyl)methyldiphenylsilane by amination with pip-
eridine® When treating4 with lithium metal in THF at room
temperature after several minutes a significant change in color is
observed, indicating the start of the-ST cleavage reactiohThe
reaction mixture is cooled to-10 °C and stirred for 4.5 h.
Subsequent trapping reactions of the colored solution with chlo-
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disilane 7 in good yield!* NMR analysis indicated thal was
formed as a mixture of two diastereomers (&r57:43). As for
other aryl-substituted disilanes, subsequent reacti@wath lithium
metal results in StSi bond cleavage affordingic-2 in the absence
of impurities.

When formed fron¥, rac-2 can be isolated in the form of single
crystals suitable for X-ray structural analysis by the removal of
THF and recrystallization from ED. Figure 1 shows the molecular
structure ofrac-2 in the solid state, which crystallized as the dimer
(2-THF), in the orthorhombic crystal system, space grBujp2;.1213
The asymmetric unit contains two crystallographically independent
dimers, which represent a pair of enantiomers. The central structural
motif of each dimer is a four-membered ring formed by two lithium
centers and oneRj- and one $)-configured silicon center. This
gives rise to one short [2.708(102.734(12) A] and one longer
[2.855(11)-2.956(14) A] Si-Li contact per lithium. The sum of
Si—C bond angles at the Si centers indicates stronger pyramidal-
ization on silicon compared to a tetrahedral arrangement, which is

10.1021/ja050360s CCC: $30.25 © 2005 American Chemical Society
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Figure 1. Molecular structure ofac-2 in the crystal; the two crystal-
lographic independent moleculeIR,3M,39)-(2-THF), and (P,1R,3P,39)-
(2-THF), are shown (Schakal pld8. Selected bond lengths (A) and angles
(deg) of (IM,1R,3M,39)-(2: THF)2: Si(1)—C(1) 1.906(7), Si(1}C(2) 1.925-
(6), Si(1)-C(8) 1.940(9), Si(2yC(18) 1.902(7), Si(2yC(19) 1.912(7), Si-
(2)—C(25) 1.958(6), Si(yLi(1) 2.933(11), Si(1)-Li(2) 2.711(11), Si(2)
Li(1) 2.734(12), Si(2)-Li(2) 2.864(11); C(1)-Si(1)~C(2) 102.3(3), C(Lr
Si(1)—C(8) 103.0(3), C(2ySi(1)—C(8) 101.0(3), C(18)Si(2)—C(19)
103.8(3), C(18)Si(2)—C(25) 99.6(3), C(19)Si(2)—C(25) 106.2(3).
(1P,1R,3P,39)-(2-THF)2: Si(3)-C(35) 1.923(7), Si(3)C(36) 1.960(6), Si-
(3)—C(42) 1.947(6), Si(4yC(52) 1.939(7), Si(4yC(53) 1.924(7), Si(4y
C(59) 1.985(8), Si(3yLi(3) 2.855(11), Si(3)-Li(4) 2.715(15), Si(4)Li(3)
2.708(10), Si(4)Li(4) 2.956(14), C(35)Si(3)—C(36) 101.6(3), C(35)
Si(3)-C(42) 99.7(3), C(36)Si(3)—C(42) 105.1(3), C(52)Si(4)—C(53)
105.1(3), C(52)-Si(4)—C(59) 103.0(3), C(53)Si(4)—C(59) 101.9(3).

a result of the hybridization defeétof Si in silyl anions or highly
polar lithiosilanes [306.3on Si(1), 309.8 on Si(2), 306.4 on Si-
(3), and 308.3 0on Si(4)].

Both lithium centers are coordinated by a nitrogen atom and one
THF molecule, respectively. This leads to the formation of a ladder
framework consisting of a central-SLi—Si—Li and two Si-Li—
N—C four-membered rings. The ligands on the Li centers in each
dimer show formallyC, symmetry (perpendicular to the central
Si—Li—Si—Li ring), while the Si centers show formal inversion
symmetry to each other. By this arrangement, in addition to the
stereogenic silicon centers, two chiral planes are formed, resulting
in four chiral elements per dimer.

In principle, when constructing dimeric aggregates from the
monomeric lithiosilaneac-2, 16 different isomers are imaginabife,
two enantiomers of which were found in the solid state, 1°C,
and?°Si NMR analyses at-40 °C in tolueneds (sample prepared
by dissolving crystals afac-2) indicate the existence of more than
one isomer in solution. However, no further classification of these
structures was possible. In THfg; the situation is simplified as
the observation of &Si—7Li coupling at—70 °C (quartet!Jsj; =
48.9 Hz) in the?*Si NMR spectrum clearly supports the existence
of monomeric lithiosilangac-2.

Although the solid-state structure concerns the racemic lithio-
silanerac-2, one can also expect a dimeric molecular structure for
the enantiomerically pure compoudWe further emphasize that
this molecular structure has to be different from the structure found
for the racemic lithiosilaneac-2, as each dimer observed in the
crystal structure consists of onB){ and one §)-configured unit.

To avoid possible stereochemical problems, all reactions involving
the enantiomerically enriched lithiosilar®eshould be performed
in THF solution.

Starting from simple compound, an unanticipated and novel

Si—C bond cleavage reaction permits preparation of the amino-

methyl-functionalized lithiosilaneac-2, which has major synthetic
potential (e.g., for nucleophilic transfer of silicon moieties).
Currently we are investigating related-&& bond cleavage reactions
as new synthetic entry to enantiomerically enriched lithiosilanes.
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